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SUMMARY

The availability of geographically indexed health and population data, with advances in computing,
geographical information systems and statistical methodology, have opened the way for serious exploration
of small area health statistics based on routine data. Such analyses may be used to address speci"c questions
concerning health in relation to sources of pollution, to investigate clustering of disease or for hypothesis
generation. We distinguish four types of analysis: disease mapping; geographic correlation studies; the
assessment of risk in relation to a prespeci"ed point or line source, and cluster detection and disease
clustering. A general framework for the statistical analysis of small area studies will be considered. This
framework assumes that populations at risk arise from inhomogeneous Poisson processes. Disease cases are
then realizations of a thinned Poisson process where the risk of disease depends on the characteristics of the
person, time and spatial location. Di$culties of analysis and interpretation due to data inaccuracies and
aggregation will be addressed with particular reference to ecological bias and confounding. The use of
errors-in-variables modelling in small area analyses will be discussed. Copyright ( 1999 John Wiley & Sons,
Ltd.

1. INTRODUCTION

The availability of geographically indexed health and population data, and advances in comput-
ing, geographical information systems and statistical methodology, have enabled the realistic
investigation of small area variation in disease risk. In this paper we describe an idealized
conceptual framework from which small area analyses may be viewed. We then describe how this
view must be adjusted when the necessarily incomplete information available is considered. In
particular we consider the implications of inaccuracies in population, exposure and health data,
and the e!ect of the scale at which the data are recorded. We discuss how errors-in-variables
modelling can, at least in theory, address some of these problems. Speci"c di$culties that are
emphasized include ecological bias and confounding.

We motivate our discussion by considering the aims and use of small area analyses. To achieve
this we distinguish between four types of study:

(i) disease mapping;
(ii) geographic correlation studies;



(iii) the assessment of risk in relation to a point or line source;
(iv) cluster detection and disease clustering.

Disease mapping is carried out to summarize spatial and spatio-temporal variation in risk. This
information may be used for simple descriptive purposes, to provide context for further studies,
or, by comparing the estimated risk map with an exposure map, to obtain clues as to disease
aetiology. Geographic correlation studies exploit geographical variations in exposure to environ-
mental variables (such as air pollution) and life-style factors (such as smoking and diet), again in
order to gain clues as to disease aetiology. While the statistical models that are used for disease
mapping and geographic correlation studies may be similar,1 the di!ering aims distinguish them;
disease mapping studies are primarily descriptive, while geographic correlation studies are
focused on aetiological questions. Point source type studies are appropriate when increased risk
close to the source is suspected, or where the source is considered to present a potential
environmental hazard. The exposure may be related to a point source, for example, a nuclear
installation or a radio transmitter, or a linear source, for example, a road or a powerline. In such
cases any increased exposure due to the putative source is likely to extend over a small region and
only a highly-localized study will have su$cient geographic resolution to provide an estimate of
the associated risk. When a well-de"ned biological hypothesis is driving the investigation then the
interpretation of the results is most straightforward, but where the study is carried out because of
a media report, or the worries of the local population, interpretation becomes much more di$cult
because there is no a priori hypothesis.

Finally, detection of individual disease &clusters1 or general &clustering', with no associated
hypothesis, may be attempted but again interpretation is di$cult. Surveillance (cluster detection)
is carried out to provide early detection of raised incidence of disease when there is no speci"c
aetiological hypothesis. More general studies of clustering, that is the tendency for disease cases
to occur in non-random spatial patterns (allowing appropriately for the underlying population
distribution) have a more robust statistical formulation and again may give clues as to aetiology.
For example, there is consistent evidence of spatial clustering of Hodgkin's disease (for example,
Alexander et al.2) which, along with other epidemiological evidence and laboratory studies, have
suggested a possible infectious aetiology.

We note that the above characterization is convenient for our purposes but there is overlap
between the categories. For example, disease mapping may provide information both on indi-
vidual disease clusters and more generally on clustering, while a point source of exposure may
give rise to localized non-random distribution of cases.

We begin our description of an idealized population/exposure/health outcome framework within
which to carry out small area analyses by stating an obvious fact: individuals are not uniformly
distributed in space or time; they are born at a location on a particular date which depends (in
probabilistic terms) on the population density on the date, and they then move through space as
part of their daily lives or because of migration. During these movements, indexed by time,
individuals will travel through numerous exposure surfaces and the integrated exposure will
determine the usual biological quantity of interest in a study, the lifelong dose. Individual
characteristics such as age, sex and genetic factors, and life-style variables such as smoking and
diet, along with lifelong dose due to an exposure of interest, all then contribute to the sub-
sequent disease experience of an individual. Statistical models may be proposed for each of the
components of the idealized framework, but suitable data are required for these models to be
useful.
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The ideal data would consist of precise information on the population of a study region including
individual characteristics, movements, personal exposures and subsequent health record. Of course
it is never feasible to obtain such information, and a number of simpli"cations to the model
suggested by the idealized framework (assumptions), are imposed by the available data. In many
situations the quality of the data and subsequent extent of the assumptions may seriously limit the
utility of a study, particularly when one considers that the increases in risk due to many putative
exposures are likely to be small. However, from a public health standpoint, there is a often a need to
provide a view on a speci"c question, based on the data at hand, and with careful consideration of
the aforementioned shortcomings. At the least this will provide a qualitative answer on whether or
not there appears to be any problem. There are a number of examples in which space}time clusters
of disease cases have provided clear aetiological information. For example, a cluster of malignant
pleural mesothelioma cases in the small Turkish village of Karain was subsequently linked to the
identi"cation of exposure to naturally occurring erionite "bres,3 although this example is atypical in
that it relates to an exposure that produced a high excess risk.

We now distinguish between point data and count data. Each of the population, exposure and
health data may have associated exact spatial and temporal information (point data) or be
available as aggregated summaries (count data). Point data give the closest link to the conceptual
framework but such data are rarely available routinely. Case-control studies provide point data
for cases and a set of controls but require epidemiological expertise, to minimize di$culties of
selection and other biases, are expensive and time-consuming to carry out, and may not be
feasible in given situations. For these reasons case-control studies are not carried out routinely
but only when there is su$cient evidence/concern to warrant their use.

Small area studies are complex and we concentrate on particular issues. The outline of this
paper is as follows. In Section 2 we review issues relating to population, exposure and health data
that are relevant for small area analyses. In Section 3 we consider the problems caused by
aggregation and by the inaccuracies that are due to data collection. In particular we discuss how
these issues potentially lead to problems of ecological bias and confounding. In Section 4 a statist-
ical framework for small area studies is described and the modelling and analysis of the four types
of study, noted above, is placed within the context of this framework. Commonly-made assump-
tions are also highlighted within the context of this framework. In Section 5 we discuss how
errors-in-variables modelling may be utilized in small area studies. Section 6 contains concluding
remarks. We do not review the now huge literature on small area methods, instead we highlight
key papers at appropriate points. Useful reviews can be found in Marshall,4 Alexander and
Cuzick,5 Clayton and Bernardinelli,6 Elliott et al.7 and Alexander and Boyle.8

2. DATA ISSUES

As described above, the ideal situation in which to carry out small area studies is when accurately
recorded point data are available. Only rarely will we "nd ourselves in such a situation and in this
section we describe the data that are typically available. In the next section we consider the
implications of using these data.

2.1. Population data

When a case-control study is carried out, information on the population at risk is obtained via the
exact locations of the control sample. More typically, population data, at least for routine
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inquiries, are based on aggregated counts. Diamond9 provides a review of the data that are
available for estimating the populations of small areas. National population registers are the gold
standard but, as described by Diamond,9 only rarely are such data available and estimates are
typically based on vital registration (births and deaths) and censuses. The latter provide a snap-
shot of the population on a speci"c date, strati"ed by, at the least, age and sex. The raw census
counts are themselves estimates, being subject to miscount, with the more likely error being
underenumeration. Often an attempt is made to correct the raw counts, for example the
&Estimating with Con"dence' project in the U.K. adjusted the 1991 census population statistics.10
Such work can provide valuable information on the likely discrepancy between actual and
estimated population sizes, as can local registers. In particular errors-in-variables modelling
(Section 5) may utilize such information.

For inter-censual years, population counts must be estimated and must take into account
not only the usual demographic changes (that is, births/deaths) but also migration. Popula-
tion projections beyond the most recent census (and perhaps before the earliest usable census)
will also often be required for small area studies. The frequent lack of a common geo-
graphy between censuses introduces further problems when a set of population counts by year
is produced. In England and Wales, 70 per cent of the censual Enumeration Districts (EDs)
changed between the 1981 and 1991 censuses whilst the geographical units were di!erent again
in 1971.

2.2. Exposure data

We will use exposure data as an umbrella term for all explanatory variables, that is variables
associated with disease status, therefore it includes confounders such as social deprivation, as well
as other social and environmental factors. The di$culty in obtaining appropriate measures of
exposure in small area studies should not be underestimated. Individual exposure sampling and
biological monitoring are both costly and invasive, even where reliable and valid measures to
estimate exposure are available. Direct individual exposure data are therefore only available very
rarely. Environmental monitoring is also expensive and is likely to give only a partial picture of
the true exposure over an area, especially if it is exposure integrated over many years that is of
most interest. As an alternative, exposure maps may be produced, using for example interpolation
via kriging,11 and from these, individual or area-level estimates may be derived (see Briggs et al.12
for a recent example). The method of construction of such maps is obviously crucially dependent
on the type of exposure, the medium (for example, air/soil/water) and the available data.
Exposure levels may be based on one or a number of: monitors, emission modelling and
dispersion modelling.

Often (for example, Elliott et al.13) small area studies use distance from putative source as
a surrogate for exposure. Distance may relate to individual residences (point data) or to the
population centroid (say) of a small area (count data).

A major di$culty in interpretation is the issue of socio-economic confounding. Sources of
pollution tend to be in socio-economically disadvantaged areas, whilst deprivation itself is
strongly linked to ill health and health-de"ning behaviour such as smoking. Failure to account
for social deprivation can therefore seriously bias investigation of small area health statistics.
Area-level indices of deprivation may be constructed from census variables though this may only
provide a very crude adjustment for the underlying variables of interest (for example, individual-
level smoking).
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2.3. Health data

As with population and exposure data, health data may be available with associated point
locations, or as aggregated counts, and will potentially be subject to a number of inaccuracies.
For any health event there is always the potential for diagnostic error or misclassi"cation,
especially at older ages where diagnostic tests and post-mortem examinations are carried out less
frequently than at younger ages. Some events may be captured poorly, if at all, in routine
registers, for example, early abortions. For others, such as cancers, case registers may be subject to
double counting and under-registration as well as diagnostic inaccuracies. Some assessment of
the basic quality of the data is therefore essential to inform their use in small area analyses.

3. IMPLICATIONS OF DATA INADEQUACIES

In this section we distinguish between data inaccuracies, many of which will often be checkable
and sometimes correctable, and problems due to the di!erent scales at which the data are held,
which is essentially "xed and determines the type of analysis which may be carried out.

3.1. Data inaccuracies

For point data arising from a case-control study many data inaccuracies will be alleviated by
a careful design. For example problems due to migration may be removed by careful criteria for
inclusion; for example, selected individuals should have been resident at their location for
a su$cient period.

For count data let >
i
and E

i
denote the observed and expected numbers of cases in area A

i
,

i"1,2, I. These expected numbers are calculated as E
i
"+

jk
p
jk
N

ijk
where j indexes an age/sex

strati"cation S
j
, k a time strati"cation ¹

k
, p

jk
is the probability of disease in (S

j
, ¹

k
) and N

ijk
is the

number of individuals in (A
i
, S

j
, ¹

k
) (for further discussion see Section 4.2). Population data

problems (underenumeration, migration) and health data problems (double-counting and under-
registration, diagnostic accuracy, migration) are not, in general, spatially and temporally neutral
and so ignoring their e!ect will introduce bias into relative risk estimates. Hence areas at
apparently high/low risk may simply be re#ecting data anomalies. Problems with population
denominators are likely to be most acute for small area studies. These data problems may be
checked using separate information or other studies/databases. For example, it may be possible
to use local registry information to obtain more accurate population counts, or at least to
determine the levels of migration in and out of the study region. This will allow, at the least,
a quali"cation of the order of the potential bias. These processes will be time-consuming, and may
not obtain a complete set of error-free cases and populations at risk, but will at least allow a more
realistic interpretation of the statistical analysis.

The implications of data inaccuracies can be determined by consideration of the e!ect on the
basic relative risk estimate >

i
/E

i
. For example, census underenumeration will lead to under-

estimation of E
i
and hence an overestimate of relative risk. This problem will be most acute when

underenumeration occurs in a stratum with a high disease probability. Double-counting and
under-registration of cases clearly lead to over- and under-estimation of risk, respectively.

Migration covers both immigration and emigration and both numerator and denominator
may be a!ected. Consequently the overall e!ects of migration are di$cult to determine. In larger
areas, migration problems are likely to cancel out since individuals will migrate within areas.
Various scenarios are possible but migration leads to dilution of e!ect when individuals who have
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been in an exposed area for a number of years migrate to an unexposed area and are then
registered with the disease at their new location. The modelling of errors in disease classi"cation,
in a general epidemiological context, has been considered by Whittemore and Gong.14 By
assuming individuals have a "xed location, and so ignoring local movements, misclassi"cation of
exposure occurs which again introduces bias. We postpone a detailed discussion of the e!ect of
inaccurately-measured exposures to Section 5.

3.2. Scale problems

As described in Section 2, data on cases, populations at risk and exposure variables are typically
collected at di!erent levels of spatial aggregation. As an example consider a study in the
north-west of England investigating the association between water constituents, in particular
magnesium and calcium, and heart disease mortality using routine health data.15 Cases are
available at the postcode level and populations at the ED level. Postcodes contain on average 14
households and EDs on average 400 individuals. Exposure to water constituents is determined
through levels in the household supply, measured at water company de"ned water zones that
contain, on average, 45 EDs. Adjustment for deprivation is carried out using the Carstairs'
index16 that is based on census variables and is hence an ED-level variable. Figure 1 shows
a subregion of this study and highlights the di!erent geography.

A crude statistical analysis would take the coarsest level of aggregation as the unit of analysis,
thus removing the scale problem, but discarding possibly important information.

A major problem in small area studies is the possibility of ecological bias which arises when
individual response/exposure relationships are estimated from data aggregated across groups. In
the spatial context these groups are areal units. The problem arises because only under very strict
conditions will a relationship at the individual level remain unchanged when estimated from
aggregated data.17 Ecological bias tends to decrease in magnitude the closer one gets to
individual data, that is, as the aggregation areas reduce in size. Ecological bias leads to the
ecological fallacy and has generated much discussion in the epidemiology literature; see for
example Richardson et al.,18 Piantadosi et al.19 and Greenland and Robin.20 Ecological bias may
arise due to confounding both within and between areas. If these confounders are measured then
bias may potentially be reduced but in practice one never knows whether all such confounders
have been adjusted for.

4. STATISTICAL FRAMEWORK

In this section we describe the general Poisson process framework within which small area studies
may be viewed. This framework has been considered by a number of authors including Diggle21
and Diggle and Elliott.22 The latter considered ecological bias and di!erent scales of measure-
ment from this viewpoint.

In Diggle21 the modelling of risk in relation to a putative source was considered when point
data for a sample of controls and disease cases were available. He considered the two-dimensional
locations of residence x of controls and cases as arising from inhomogeneous Poisson intensity
functions j

2
(x) and j

1
(x), respectively. This is useful but a major assumption, namely that

exposure is associated with a speci"c location, has been made.
Here we extend the framework to consider, in addition to space, individual characteristics and

time. The modelling of the e!ect of non-spatial variables has been considered previously by
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Figure 1. Region of north-west England showing postcodes (only those postcodes lying in geographically large enumer-
ation districts are shown for clarity), enumeration districts and water zones at which, respectively, health, population and

exposure data are measured

a number of authors (for example, Diggle and Rowlingson23), see Sections 4.1 and 4.2. Let
z represent individual characteristics (for example, age, sex, genetic factors and ethnicity) and
t calendar time. Then the population at risk, at a location x, with characteristics z and at time t,
may be modelled by a Poisson process with intensity function j

0
(x, z, t). Similarly, for a non-

infectious disease (that is, assuming no interaction between cases), cases are generated with
intensity function j

1
(x, z, t) where

j
1
(x, z, t)"j

0
(x, z, t)]p(x, z, t) (1)
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and p (x, z, t)"Pr(disease D location x, characteristics z, time t). Hence cases of the disease form
a thinned Poisson process. In general, epidemiological investigations aim to learn about p(x, z, t)
(place/person/time) and spatial epidemiological investigations are particularly interested in the
way in which p (x, z, t) varies with x.

We now consider the analysis of point and count data within this framework, with reference to
the four types of study outlined in Section 1.

4.1. Point data

We "rst consider point, that is, case-control, data since this provides the closest link with the
Poisson process framework. Suppose that we obtain a set of cases with locations x

i
, i"1,2, n

and a sample of controls with locations x
i
, i"n#1,2, n#m from some region of interest R.

The controls may be a random sample from the population at risk, or be cases of another disease
which has a similar age/sex pro"le.

Since we do not, in general, obtain the complete set of non-cases, we are required to introduce
further notation. Let j

2
(x, z, t) denote the intensity function of the controls where

j
2
(x, z, t)"c][j

0
(x, z, t)!j

1
(x, z, t)] (2)

and 0(c)1 represents the probability of selection for a non-case. The selection mechanism
implies the quantity c although this is rarely known (and is not required to be known for inference
concerning spatial location, see below). The reason that c is not known is that in practice we do
not select stochastically from the pool of controls. Suppose we require three times as many
controls as cases. We would "rst identify the n cases and then simply select m"3]n non-cases
from a convenient source. For example, in a study of asthma and proximity to roads via hospital
admissions, non-respiratory admissions may be used as the pool of controls. In such a study car
accident admissions would be excluded to avoid selection bias.

For completeness we may also de"ne the intensity function of the selected cases:

j
3
(x, z, t)"d]j

1
(x, z, t)

where 0(d(1 represents the probability of a case being registered. Hence if we have under-
registration (for example) over all covariate groups in a particular period (t

1
, t

2
) then we will have

d(1 for t3 (t
1
, t

2
).

Now suppose we condition on the locations of the cases and controls and let >@
i
represent

a Bernoulli random variable with >@
i
"1 for a case and >@

i
"0 for a control. We denote by

p@(x, z, t) the probability of being a case. Then, using the standard argument for inference for
case-control data via logistic regression, we have

p@(x, z, t)"
d]p(x, z, t)

d]p(x, z, t)#c][1!p (x, z, t)]

or, equivalently

p@(x, z, t)"
j
3
(x, z, t)

j
3
(x, z, t)#j

2
(x, z, t)
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both of which lead to

p@(x, z, t)

1!p@ (x, z, t)
"

j
3
(x, z, t)

j
2
(x, z, t)

"

p(x, z, t)

1!p (x, z, t)
]

d

c

providing a link between p@(x, z, t) and p(x, z, t). Hence, although we obviously cannot recover
j
3
(x, z, t) and j

2
(x, z, t), we can estimate the ratio of the odds of disease at di!erent locations.

4.1.1. Disease mapping

Disease mapping studies are most frequently associated with count data, but if we use as
a de"nition the estimation of a geographic risk surface then such studies may be carried out using
point data also.

We "rst consider methods based on kernel density estimation. Such methods are non-
parametric and so it is not possible to model explicitly the e!ects of individual covariates z or time
t, using the basic approach (see below for an extension). Obviously risk estimates may be
constructed for di!erent covariate groups and time periods, though sparsity of data restricts the
number of such maps that may be produced. To simplify notation we, for the moment, suppress
dependence on z and t, and let j

3
(x) and j

2
(x) denote the intensity functions of cases and controls,

respectively (where it is assumed that the controls are a simple random sample from the
non-cases). Then the cases and controls may be viewed as random samples of sizes n and m from
the probability density functions j*

3
(x) and j*

2
(x), respectively, where

j*
j
(x)"

j
j
(x)

:
R
j
j
(x) dx

for j"2, 3. Bithell,24 Lawson and Williams25 and Kelsall and Diggle26,27 then used kernel
density estimation to provide an estimate of the relative risk surface j*

3
(x)/j*

2
(x). Strictly speaking

this surface is proportional to the odds of, and not the risk of, disease, but for rare diseases these
quantities are approximately equal. These techniques allow the direct visualization of the
intensity functions j

3
(x) and j

2
(x) though it is the ratio of these that is of interest.

The e!ects of covariates z and time t may be accounted for using as a control a sample of cases
from a disease with a similar pattern of disease over z and t (for example, lung and larynx cancer
in relation to smoking21).

More recently, Kelsall and Diggle28 have proposed an alternative method using a generalized
additive model.29 The latter may be used explicitly to model the odds of disease as a function of
non-spatial variables and spatial location. Speci"cally the logistic generalized additive model

logit p@(x, z, t)"a#f
z
(z)#f

t
(t)#f

x
(x)

is used, where f
z
and f

t
are linear functions of unknown parameters, and f

x
(x) is estimated using

kernel regression.

4.1.2. Geographic correlation studies

Geographic correlation studies in general estimate associations between aggregated popula-
tion/exposure and health data, and hence utilize count data. However, in some instances (for
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example, case-control studies) individual health and population point data may be available but
exposure may be measured at a larger scale. For example, the same exposure score may be
assigned to all individuals within a certain distance of a pollution monitor. In this case standard
logistic regression approaches to the analysis of case-control data may be used, that is

logit p@(x, z, t)"a#bz#ct#d=(x) (3)

where=(x) denotes the pollution at location x. There is still an ecological level to the analysis,
namely the level at which the exposure is measured.

4.1.3. Point/line sources

The e!ect on the odds of disease of a point/line source may be investigated via standard logistic
regression using a direct measure of exposure (as in (3)). Alternatively a surrogate for exposure,
such as distance from pollution source (for example, Cook-Mozzafari et al.30), may be used.
A disadvantage of this approach is that as distance tends to in"nity the probability of disease
tends to zero and not baseline, as required.

The model given by (3) may also be used when each individual in the study is assigned a unique
pollution score= (x) from a pollution map, thus removing the ecological aspect. For example the
Small-Area Variations In Air Quality and Health (SAVIAH) case-control study12 investigated
the relationship between childhood wheeze, levels of nitrogen dioxide and individual-level
explanatory variables. Nitrogen dioxide measures were available at a number of monitor sites
and these were modelled as a function of location-speci"c variables such as altitude, tra$c
volume and land cover. These latter variables were also available at each of the case and control
locations and so approximate nitrogen dioxide levels =(x) could be calculated for each of the
study individuals.

To more realistically model the exposure/risk relationship, Diggle and Rowlingson23 proposed
the model

logit p@(x, z, t)"a#bz#ct#log f ( Dx!x
0
D , h) (4)

where f ( Dx!x
0
D , h) represents a simple function, depending on parameters h, to describe the

e!ect of being at location x, relative to the location of the point source x
0
. This function was taken

to be a simple monotonic function of distance, which tends to one as distance tends to in"nity.
Diggle21 did not condition on locations and assumed that

j
1
(x)"oj

2
(x) f ( Dx!x

0
D , h)

where o is a scaling parameter and the &nuisance parameter' j
2
(x) was estimated using kernel

density estimation. Unfortunately this method is sensitive to the choice of smoothing parameter
and, since j

2
(x) is not of interest, an approach using (4) is preferable.

4.1.4. Cluster detection and disease clustering

A large number of methods have been proposed to detect individual clusters or general clustering
using individual-level data.5,8,31 Cluster detection, or surveillance, may be carried out using the
kernel-type methods described in Section 4.1.1, though the statistical properties (for example,
sensitivity/speci"city) of such an approach are unknown. In particular the choice of smoothing
parameter is likely to be crucial.
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When a particular collection of cases is alleged to be a cluster, then any investigation should
de"ne a population of interest z

#
and a time period of interest t

#
. Often these parameters are

selected a posteriori leading to the problem of &boundary shrinkage'. The smaller the population
at risk and the shorter the time period that contains the cases within the &cluster', the larger the
apparent excess in risk. The statistical problem is to estimate the odds surface j

3
(x, z, t)/j

2
(x, z, t)

for z3z
#

and t3 t
#
. Locations x may then be highlighted as the location of a &cluster' if they

exceed an epidemiologically signi"cant risk r
#
. In this way an observed collection of cases has

been replaced by an estimated risk surface. As Alexander and Cuzick5 point out, a mathematical
de"nition of a cluster or clustering is far easier to determine than a de"nition based on an
empirical set of data.

Three related cluster detection methods are described by Openshaw et al.,32 Turnbull et al.33
and Besag and Newell.34 Each of these methods considers the number of cases located within
circles drawn about speci"c points. The observed signi"cance level of each con"guration is then
assessed via Poisson tail probabilities using the populations within each circle. No explicit use of
the framework described above is used; the methods are essentially non-parametric and vary in
the degree of arbitrariness in the way in which the required circle radii are de"ned, and in the
rigour with which the multiple testing problem is acknowledged.

Cuzick and Edwards35 examine general clustering by, for each case, counting the number of
cases within the k nearest neighbours. An overall level of signi"cance is produced but no estimate
of the geographic scale of clustering. A method which gives such information is that of Diggle and
Chetwynd36 who estimate the di!erence between the clustering in the underlying case and control
spatial processes. Extensions to these basic methods may be found in Alexander and Boyle.8

A general problem with clustering is that if it is due to a speci"c exposure variable then it is
extremely unlikely that the scale will be constant across the study region. This may be assessed by
examining estimated risk surfaces produced by kernel methods.

4.2 Count data

Suppose the study region R is divided into a set of areal units A
i
, i"1,2, I (for example, EDs).

Suppose also that we obtain the data strati"ed by a set of individual groupings S
j
, j"1,2, J (for

example, "ve-year age bands and sex) and by time intervals ¹
k
, k"1,2,K (for example,

calendar years). The available data then typically consist of:

(i) >
ijk

, the number of cases in area A
i
within stratum S

j
and time period ¹

k
.

(ii) N
ijk

, the population at risk in area A
i
within stratum S

j
and time period ¹

k
. We assume

that N
ijk

includes both cases and non-cases which would be true if the counts were
obtained from the census.

(iii) =
ik
, the values of explanatory variables measured for area A

i
in time period ¹

k
. These

variables may include characteristics such as deprivation index, pollution scores which
may be measured at particular locations within area A

i
, or &hospital e!ects', due for

example to di!erences in diagnosis or coding between hospitals, in which case many
neighbouring areas will receive the same score.

For simplicity of notation we have imposed a common geographical/temporal scale on the cases,
populations and area characteristics. We note that the strati"cation by calendar year, age and sex
can in principle be taken as "ne as possible, for example, annual 5-year age}sex counts. The
grouping into areas is not #exible.
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The assumption of a Poisson process then implies that N
ijk
&Poisson (j

0ijk
) and >

ijk
&

Poisson(j
1ijk

) where

j
lijk

"P
Ai
P
Sj
P
Tk

j
l
(x, z, t)dtdzdx

for l"0, 1. Note that with count data we can gain no information within the cell (A
i
, S

j
, ¹

k
). In

particular we do not know the form of the relationship within a class and so we cannot evaluate
these integrals.

To model p (x, z, t) we are required to make further assumptions. In particular we may take
p(x, z, t)"p (z, t)]p(x Dz, t)"p (z, t)]p(x Dt). This assumption states that the risk decomposes
into a person/time component and a spatial e!ect which depends on time. For example, the
probability of disease at a particular point may change at the time at which a pollution source
become active (allowing for a suitable lag period).

An assumption which is then implicitly made is that the discretization (S
j
, ¹

k
) is chosen so that

p(z, t) is approximately constant over stratum S
j
and time period ¹

k
, that is, p (z, t)+p

jk
for z3S

j
and t3¹

k
. This would obviously not be true if the strati"cation over z were taken to be too coarse

and also if very large time periods were considered. Bias will result if each of these is far from the
truth.

The quantity p
jk

may be estimated in a number of ways. The relationship may be assumed to
follow some mathematical form, for example a log-linear model whose parameters may then be
estimated. More commonly the p

jk
are estimated using either a larger region within which the

study lies (external standardization) or from all of the data in the study region (internal
standardization), that is pL

jk
">

`jk
/N

`jk
. This shows the di$culty of taking too "ne strati"cation

and too narrow time periods } for rare diseases there will be insu$cient data for precise estimates
to be obtained. We note that if inappropriate rates are used then bias will also result. For
example, for many diseases there are large di!erences between the south and north of England
and so the use of national rates for local studies may not be appropriate.

We now assume
p(x Dt)"f (=(x, t),;(x, t))

where we have covariates=(x, t), for which there are available measurements, and unmeasured
covariates (which we assume in#uence risk) ;(x, t).

We then have

j
1ijk

"P
Ai
P
Sj
P
Tk

j
0
(x, z, t)]p(z, t)]p(x Dt)dtdzdx

"p
jkP

Ai
P
Sj
P
Tk

j
0
(x, z, t)]f (=(x, t), ;(x, t))dt dzdx. (5)

If we assume = (x, t)"=
ik

and ; (x, t)";
ik
, for x3A

i
, t3¹

k
, then we have introduced the

potential for ecological bias (since the covariates are assumed to be constant) but we have

j
1ijk

"p
jk
]f (=

ik
,;

ik
)]P

Ai
P
Sj
P
Tk

j
0
(x, z, t)dtdz dx

"p
jk
]f (=

ik
,;

ik
)]j

0ijk
. (6)
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Diggle and Elliott22 given an example of the e!ects of ecological bias using a point source
example. They consider location only, and for a generic area A examine

j
1
"P

A

p(x)j
0
(x) dx.

In this case ecological bias is introduced when we try to estimate p(x) from area level data only.
The conditions for no ecological bias are apparent, the functions p and j

0
should be such that we

can write

j
1
"DA D~1 P

A

p (x) dx P
A

j
0
(x) dx

which occurs when: (i) p (x) is constant in A; (ii) j
0
(x) is constant in A; or (iii) the random

variables p(X) and j
0
(X), where X is uniformly distributed on A, are uncorrelated. As Diggle and

Elliott comment, none of these is likely to be true in practice. From these arguments one
possibility would be to deform the geographic area in order to produce constant populations at
risk (that is, j

0
constant) but such approaches have so far proved unsuccessful.37

If we condition upon the population totals we have

>
ijk

DN
ijk
&Binomial (N

ijk
, p

ijk
)

where

p
ijk
"

j
1ijk

j
0ijk

"p
jk
]f (=

ik
, ;

ik
) . (7)

Hence j
0ijk

is e!ectively estimated by N
ijk

. In the case of rare diseases, >
ijk

is approximately
Poisson (N

ijk
p
ijk

).

4.2.1. Disease mapping

Referring to the above framework, recall that the ;
ik

are unobserved covariates. We now make
the natural modelling assumption that

f (=
ik
, ;

ik
)"g(=

ik
, b)]exp(;

ik
t)

"g(=
ik
, b)]o]g

ik
(8)

where the g
ik

are such that E[g
ik
]"1 and may be viewed as random e+ects which account for

unmeasured covariates. Then, from (7) and (8)

>
ijk
&Poisson(E

ijk
]g(=

ik
, b)]o]g

ik
)

where the expected numbers E
ijk
"N

ijk
p
jk

. Summing over all strata and time periods, and
assuming=

ik
"=

i
and g

ik
"g

i
for all k, we obtain the familiar disease mapping model38

>
i
&Poisson(E

i
]g(=

i
, b)]o]g

i
)

where >
i
"+

j
+

k
>

ijk
and E

i
"+

j
+

k
N

ijk
p
jk

. Frequently g (=
i
, b)"exp(b=

i
).
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Figure 2. Age, sex and deprivation adjusted relative risks of cancers of the brain and central nervous system for electoral
wards in West Midlands region, England. Unsmoothed and smoothed risk estimates are shown on the left and right,

respectively (from Eaton et al.39 with permission)

Mapping the raw rates >
i
/E

i
is notoriously dangerous (for example, Clayton and Kaldor38)

since sparsely populated areas have estimates with large standard errors and hence produce
unstable rates. On the other hand, mapping the Poisson signi"cance levels highlights areas with
large populations, since these are more likely to produce signi"cant results. The left hand panel of
Figure 2 shows a map of &unsmoothed', that is, raw estimates (adjusted for age, sex and
deprivation within the expected numbers) of brain cancer incidence for 1974}1986 across
electoral wards in the West Midlands region of England.39 We see that the large, sparsely
populated rural areas tend to have more extreme rates which might cause concern to local
residents/health o$cials.

To &smooth' the rates the g
i

may be assumed to be independent realizations from some
distribution, for example the gamma or log-normal. Hence heterogeneity of rates is modelled. The
right hand panel of Figure 2 shows smoothed estimates of risk based on a gamma model for the
rates. We see that a greater degree of smoothing has occurred in those rural areas with smaller
populations. There do not now appear to be any areas with excessively large rates.

Alternatively the g
i
may be assumed to be spatially correlated to give a clustering model.

In this case a form of conditional autoregressive (CAR) model is a common choice (for example,
Besag and Kooperberg40). Besag et al.41 speci"ed a model which allowed for both heterogeneity
(via spatially-independent random e!ects) and clustering (via spatially-dependent random
e!ects).

Recent extensions to this basic framework include Best et al. (Best, Ickstadt and Wolpert, 1998,
in preparation) who apply the gamma random "eld model of Wolpert and Ickstadt42 and Kelsall
and Wake"eld (1998, submitted for publication). The latter assumes that the underlying risk
follows a Gaussian process and hence avoids the neighbourhood structures of commonly-used
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disease models (for example, the &common boundary' speci"cation) that are rarely realistic when
the areas are of di!erent shapes and sizes.

4.2.2. Geographic correlation studies

Richardson17 provides a review of methods for geographic correlation studies. These range from
simple graphical comparison of maps of exposure and estimated rates, to Poisson regression
techniques of the form described in the previous section, and hence relate explicitly to the Poisson
process framework. One of the important considerations is to acknowledge the spatial correlation
that is present in the data.1 Wake"eld and Morris15 discuss this and other issues (including
overdispersion) in the context of the study mentioned in Section 3.2 investigating the relationship
between heart disease mortality and magnesium and calcium in water. In Section 5.3 we discuss
an errors-in-variables approach to the modelling of the relationship between exposure and
disease.

4.2.3. Point/line sources

A simple semi-parametric method for investigating increased risk close to a point source is due to
Stone.43 A Poisson model >

i
&Poisson (E

i
k
i
) is assumed where the labels i"1,2, I are such

that the area centroids have been ranked in increasing distance from the point source. The null
hypothesis H

0
: k

1
"2"k

I
"k is then tested versus H

1
: k

1
*k

2
*2*k

I
. The uncondi-

tional version of the test takes k"1 but has the undesirable property that H
0

may be rejected
simply because the risk in the study region as a whole is elevated or reduced. The conditional
version with k unspeci"ed is therefore generally preferred. There are a number of di$culties with
Stone's test, in particular no modelled risk as a function of distance is produced. Such a function,
with associated standard errors, is a highly informative summary. In the original formulation,
covariates could only be dealt through the expected numbers; the test has now been extended by
Morton-Jones et al.44 Lawson45 considers radial and directional health e!ects associated with
a point source.

Diggle et al.46 proposed a framework for investigating disease risk close to a putative source
when only count data are available. The model was of the form

>
i
&Poisson(E

i
k
i
)

where

k
i
"o]exp(b=

i1
)]f (=

i2
, h)

where =
i2
"Dx

i
!x

0
D represents the distance of the centroid of ED i from the location of the

point source x
0
, and=

i1
represents area-level covariates (for example, deprivation). The function

f () , )) is the same as that speci"ed in equation (4). Their formulation did not explicitly include
random e!ects though overdispersion was incorporated; maximum likelihood was used for
estimation. Wake"eld and Morris (1998, submitted for publication) consider a Bayesian version
and explicitly embed the above model within a disease mapping framework.

4.2.4. Cluster detection and disease clustering

As with point data, a large number of approaches have been proposed for cluster detection and
disease clustering with count data. A simple test for heterogeneity of rates is due to Pottho! and
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Wittinghill.47,48 This method and its application to clustering is discussed further in Muirhead
and Butland.49

A number of the methods outlined in Section 4.1.4 can be applied to count data. As we
commented in Section 1, the disease mapping models of Section 4.2.1, with priors modelling
spatial dependence, may be used to estimate the size of clustering between &neighbouring' areas.

5. ERRORS-IN-VARIABLES

We use the term errors-in-variables to describe any non-response variable which is measured
inaccurately. As detailed in Section 2, in the context of small area studies we must consider errors
in population data and the use of inaccurate disease rates, which leads to non-exact expected
numbers, and error in data on explanatory variables. We "rst consider the general e!ect of errors
in both expected numbers and explanatory variables before speci"c types of error are considered.
We "nally consider a general Bayesian framework within which errors-in-variables modelling
may be carried out. A general description of errors-in-variables modelling may be found in
Fuller50 and Carroll et al.51 Richardson52 and Wake"eld and Stephens53 provide reviews of
errors-in-variables modelling from a Bayesian perspective.

5.1. Errors in expected numbers

In the following we consider count data only and a single area A (we therefore drop the subscript
i). Let E5 denote the notional true expected disease count for a particular area and E0 the observed
(or estimated) value. Recall that E0"+

j
+

k
p
jk
N

jk
where S

j
represents an age/sex strati"cation, ¹

k
a time period and N

jk
is the estimated number of individuals in stratum S

j
, time period ¹

k
and in

area A. The error in E0 may be due to errors in the estimation of population counts and/or errors
in the estimated probabilities p

jk
(for example, because they are based on small numbers). Within

the Poisson framework we have E[> DE5]"E5k but if instead the estimated expected numbers are
used we have

E[> DE0]"E[E5 DE0]k (9)

and

var(> DE0)"E[E5 DE0]k#var(E5 DE0)k2. (10)

Hence we see that we recover the same form of mean model but the variance in the observed data
is in#ated via the second term in (10). In general the use of a non-exact expected number will
introduce bias into the estimation of k, con"dence intervals will be too narrow and test
procedures will have poor properties.

5.2. Errors in exposure variables

To see the e!ect of using variables measured with error let =5 denote the true value of an
explanatory variable and =0 the observed (or surrogate) value. Suppose we have a response
> related to=5 via

E[> D=5]"k (b;=5)
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and

var(> D=5)"v(/;=5).

Then the use of =0 gives

E[> D=0]"E[k (b;=5) D=0]

Ok (b; E[=5 D=0]) (11)

in general. Only when k (b;=5) is linear do we obtain equality. Turning now to the variance we
have

var(> D=0)"E[v (/;=5) D=0]#var(k (b;=5) D=0). (12)

Thus the variability in the observed data is in#ated by the second term. As an example for the
log-linear model >&Poisson(E5exp(b

0
#b=5)), E[> D=0] is no longer a log-linear model and

we will see extra-Poisson variability.
In general the e!ects of errors-in-variables will depend on the type of error which is being

introduced into the explanatory variable. We now consider some examples.

5.3. Types of error

In a spatial context there are few examples of errors-in-variables modelling. Jordan et al.54 is
a recent example of an ecological study and Bernardinelli et al.55 an example of a disease mapping
study.

In the context considered here there are a number of types of errors-in-variables, in particular:

(i) variables subject to measurement error;
(ii) interpolated variables; and
(iii) variables only available as an area-level measure.

5.3.1. Measurement error

Measurement error includes errors introduced by the instrument used to measure the variable. In
small area applications these may occur when environmental exposure are measured in air, soil
and water. In many instances it will be straightforward to model these errors since information
will be available on the measurement process. Another situation in which measurement error
modelling may be used is when an exposure score is derived from a deterministic formula. For
example, in a study of the relationship between powerlines and brain cancers, the electromagnetic
"eld strength at particular locations may be derived from the voltage and load of the line and the
distance of residence from the line. This information is combined using a deterministic formula
but some idea of the uncertainty in the resultant "eld strength is available and may be utilized
within the errors-in-variables model.

Measurement error models may also be used for lifestyle variables which are measured on
individual study participants, for example dietary variables.

As described in Section 4.1.3, a common approach to modelling the association between
disease risk and the location of a point or line source is to assume a simple relationship between
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risk and distance. Distances from putative sources that are used as surrogate exposures may be
extracted using geographic information systems but will not be exact, particularly for small area
centroids, but will have an associated precision (for example, within$10 m).

5.3.2. Interpolated variables

Another errors-in-variables situation arises when the spatially varying exposure quantity is
observed at a "nite set of locations (for example, an air pollution monitoring network) and we
wish to interpolate the value at additional locations. Data of these kind are often referred to as
&geostatistical' data with kriging being a traditional solution, see for example Cressie11 and
Diggle et al.56

For point health data we require the value= (x) of the exposure at the location x of the study
individual, given the values at N points,= (x

1
),2,= (x

N
). Viewing these as observations from an

unknown spatial process, a predicted mean and variance for the random variable=(x) may be
derived. These may then be used directly within an errors-in-variable model. Alternatively a joint
model may be speci"ed for the stochastic process=(x) and the risk surface p(x) D=(x) where p (x)
is the probability of disease at location x. Currie57 considers the e!ect of replacing the true
exposure= (x) via a kriging estimate=K (x).

For count health data the average exposure in an areal unit may be estimated using a similar
procedure. Measurement error may also be incorporated in the observations=(x

j
), j"1,2, N.

5.3.3. Area-level measures

As discussed in Section 2, a number of important explanatory variables may only be measured at
the area level, for example deprivation. Wake"eld and Stephens53 describe an analysis in which
deprivation was modelled via an errors-in-variables approach. We may also obtain an area-level
measure of an exposure, for example, ambient air pollution may be measured. In this case if we
need an exposure measure for an individual within the area then a Berkson error-in-variables
model (for example, Fuller50) may be appropriate (see below).

5.4. Multi-level framework

In this section we consider a three-stage Bayesian model which is appropriate for count data with
errors-in-variables. The model for point data has a similar structure though in this case expected
numbers are not relevant.

Stage 1. Here we model the response > as a function of the true expected numbers and
explanatory variables. We have

>&Poisson(E5k (b;=5))

where b represents a vector of parameters. We denote the probability distribution of > as
p(> DE5,=5, b). Throughout p will denote a generic probability distribution.
Stage 2. At this stage we model the errors in the realized expected numbers and explanatory
variables. We assume independence between these two random quantities. For a conventional
errors-in-variable models we have p(E0 DE5, /

E
) and p (=0 D=5, /

W
) where /

E
and /

W
denote

parameters that model the relationship between the observed and true variables. A Berkson
error model for =0 would instead specify p (=5 D=0, /

W
).
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Figure 3. Graphical model representation of the Poisson model with errors-in-variables in the expected numbers E and
explanatory variables=, superscript o denotes &observed' and t &true'

At this stage we also specify a prior distribution for b.
Stage 3. For the conventional errors-in-variables model we would specify p (E5 DI) and p(=5 DI)
where I represents additional information which may be used to inform the priors. For
example, for modelling the E5 one my have local information on the size of the populations or
some information concerning migration patterns. For Berkson errors for=0 we do not require
a prior for=5.

We also specify prior distribution for /
E

and /
W

at this stage.

Richardson and Gilks58 consider errors-in-variables models in epidemiology. Following
Clayton59 they refer to p (> DE5,=5, b) as the disease model, p (E0 DE5, /

E
), p(=0 D=5, /

W
) as the

measurement models and p(E5 DI), p (=5 DI) as the exposure models. Figure 3 gives a graphical model
representation60 of the structure in the case of the classical (that is, not Berkson) errors-in-
variables model.

With the conditional independence assumptions that are implied by Figure 3 (for example,
conditional on the true explanatory variable=5, the response > is independent of the observed
explanatory variable=0), we obtain the following posterior for all of the unobservable quantities:

p(b, /
E
, /

W
, E5,=5 D>, E0,=0, I)"c]p(> DE5,=5, b)

]p (E0 DE5, /
E
)p(=0 D=5, /

W
)

]p (E5 DI)p(=5 DI)p (b)p (/
E
)p (/

W
) (13)

where c~1"p (>, E0,=0 DI) is the normalizing constant. The multi-level model described above is
easily implemented using Markov chain Monte Carlo.58,61

There are a number of di$culties associated with errors-in-variables modelling. First we must
be able to make appropriate distributional assumptions. The most di$cult of these are
p(E0 DE5, /

E
) and p (=0 D=5, /

W
) since in small area applications we are rarely able to obtain

a validation data set, that is, a data set in which both the observed and true expected numbers/
explanatory variables are available. The sensitivity of conclusions to distributional assumptions
is therefore an important step in the analysis. Recent errors-in-variables work has concentrated
on semi-parametric approaches to remove this dependence.62 A second di$culty is that the above
general formulation o!ers little insight into the e!ect of measurement error; only in speci"c
circumstances are analytical results available.
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Finally, errors-in-variables modelling should not be viewed as an approach by which poor data
can be turned into &good data'. A good design remains of paramount importance. Problems of
ecological bias cannot be solved using errors-in-variables modelling. It would also be di$cult to
turn exposure at a location into personal exposure, that is, to account for the fact that a person
does not stay at their residence for 24 hours a day.

These di$culties notwithstanding, we believe that errors-in-variables modelling is an exciting,
and currently under-used, approach in small area modelling.

6. CONCLUDING REMARKS

The e!ects of low levels of environmental pollution on health are largely unknown but are likely
to be much less than the major determinants of disease such as smoking and diet. For example,
Doll and Peto63 attribute 2 per cent of cancer deaths to pollution (the majority of which are due
to air pollution). This is a "gure which they acknowledge is very approximate due to the lack of
investigations. Small area studies are important, therefore, in order to gain a greater understand-
ing of small-scale variability in disease risk, to obtain clues as to disease aetiology, and to address
public concerns over speci"c sources of pollution.

In this paper we have highlighted a number of data de"ciencies which make the analysis and
interpretation of small-area data di$cult. The greatest problem lies in the frequent lack of a good
measure of exposure. Without such a measure the detection of a small but important increase in
risk is likely to fail. Consequently there is a great need for better exposure data and exposure
models. The use of errors-in-variables models in this context is in its infancy but we believe it has
a major role to play in the future.

To analyse small-area data successfully it is vital that epidemiologists, statisticians, pollution
modellers, geographers, data providers and computer scientists share their expertise. With this
collaboration, and with further advances in data collection, computing, geographical information
systems and statistical methodology, the challenge is to learn more about the complex, yet
important, relationship between individuals at risk, environmental exposure and potential e!ects
on health.
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